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A B S T R A C T

Flow cytometry (FC) remains a cornerstone diagnostic tool for acute myeloid leukemia (AML), yet standardizing 
panels across laboratories presents persistent challenges. Our study introduces a validated machine learning 
framework enabling cross-panel AML classification by leveraging common parameters shared across diverse FC 
protocols.

We employed FC data from 215 samples (110 AML, 105 non-neoplastic) collected in five institutions using 
different panel configurations as model training set, and another 196 similarly collected samples (90 AML and 
106 non-neoplastic) for independent validation set. The framework employs GMM-SVM classification based on 
16 common parameters (FSC-A, FSC-H, SSC-A, CD7, CD11b, CD13, CD14, CD16, CD19, CD33, CD34, CD45, 
CD56, CD64, CD117, and HLA-DR) that are consistently present across various panel designs. The framework 
demonstrated robust performance with 98.15 % accuracy, 99.82 % area under curve (AUC), 97.30 % sensitivity, 
and 99.05 % specificity. Independent validation on 196 additional samples further confirmed the framework’s 
effectiveness, maintaining high performance with 93.88 % accuracy and 98.71 % AUC.

This research establishes the viability of standardized FC analysis across diverse panel configurations and 
instruments through machine learning implementation. The framework’s robust performance suggests promising 
applications for harmonized multi-center FC analysis, potentially resolving current standardization challenges in 
flow cytometry interpretation.

1. Introduction

Multiparameter Flow Cytometry (MFC) is vital for hematological 
disease diagnostics and monitoring, with panels typically measuring 15 
or more parameters. The difficulties associated with high-dimensional 
data are amplified by the increasing use of fluorochrome/antibody 

combinations and custom testing protocols, particularly in complex 
leukemia and lymphoma tests. However, many laboratories still depend 
on manual gating, a process that requires human experts to apply a 
sequential gating procedure to large sets of bidimensional plots to 
identify and label cell populations of interest. The expert-dependent 
manual interpretation process is time-consuming, subjective, and 
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prone to inter-interpreter variability. Furthermore, a shortage of trained 
professionals in flow cytometry intensifies workloads, extends patient 
wait times, and raises safety concerns. A survey of the clinical cytometry 
workforce revealed that the vacancy rate for clinical flow cytometry 
technologists tripled from 2014 to 2022, while the retirement rate 
surged significantly from 2020 to 2022 [1,2]. Increasing clinical flow 
cytometry test demand coupled with a lack of trained professionals 
further complicates access to cytometry technologies and their appli
cation across various fields.

Differences in assay design, reagent choices, and interpretation 
practices often lead to inconsistent results and complicate standardiza
tion. In the past decades, there were many attempts to develop guidance 
and consensus for flow cytometry panels in various applications from 
cell sorting [3], PNH [4], multiple myeloma (MM) measurable residual 
disease (MRD) [5], acute myeloid leukemia (AML) MRD [6,7], and 
B-ALL MRD [8]. However, it remains challenging to achieve consensus 
among laboratories regarding panel design for particular clinical ap
plications. Various institutions may prioritize different markers based on 
regional preferences, reagent availability, or historical methods, 
resulting in diverse diagnostic practices for similar medical conditions. 
This inconsistency complicates the comparison of patient results be
tween labs and may impede collaborative clinical and translational 
research.

Artificial intelligence (AI), particularly machine learning (ML), holds 
significant potential for assisting physicians in managing hema
tolymphoid diseases by simplifying the interpretation of complex flow 
cytometry data. ML approaches have been applied to various aspects of 
flow cytometry analysis, aiding in tasks such as diagnosis, risk stratifi
cation, and predicting treatment responses. Numerous computational 
solutions have been developed for specific applications, including 
quality control algorithms to filter low-quality events (e.g., flowAI, 
flowClean, PeaCoQC [9] and normalization algorithms to mitigate batch 
effects (e.g., CytoNorm [10]). Approaches like clustering for automated 
cell population identification utilize density-based methods such as 
FlowSOM [11], while automated gating algorithms and dimensionality 
reduction techniques, such as principal component analysis (PCA), 
t-SNE, and PhenoGraph [12], enable improved visualization of flow 
cytometry data.

More recently, deep learning methods have been implemented for 
classification tasks, with examples like FlowCat and EnsembleCNN [13]. 
While many of these tools focus on identifying cell populations [14], 
machine learning-driven approaches for disease classification using 
MFC data are also emerging. Such examples include UMAP-RF [13], 
which classifies diseases, and CNN-based methods for subtype classifi
cation of B-cell non-Hodgkin lymphomas (B-NHL) [15]. These de
velopments demonstrate the growing potential of ML in advancing 
clinical applications of flow cytometry.

Furthermore, many of these tools could only support data analysis 
measured with the same panel, therefore, it is hard to apply the one 
optimized pipeline developed to analyze one dataset readily applicable 
to analyze data acquired using another flow cytometry panel. Addi
tionally, several of these tools lack accessible interfaces and require 
users to write computer languages such as R or Python, making them less 
practical for clinical environments. This shortcoming emphasizes the 
demand for better options for comprehensive immunophenotype 
assessment. All of these phenomena underscore the urgent need for user- 
friendly bioinformatic solutions that can efficiently analyze complex 
flow cytometry data without requiring advanced programming skills.

Addressing these pressing issues requires a multifaceted approach 
that includes the development of intuitive, automated analysis software, 
improved training programs, standardized protocols to minimize vari
ability, and initiatives aimed at enhancing job satisfaction and retention 
for laboratory staff.

We have previously shown that supervised machine learning ap
proaches can effectively identify leukemia at sample level through 
multiple retrospective studies at single centers: 1) AML MRD assessment 

using 5333 flow cytometry data from National Taiwan University Hos
pital (NTUH), achieving accuracies between 84.6 % and 92.4 % and 
AUCs reaching between 92.1 % and 95.0 % [16]; 2) Acute leukemia 
subtype classification with 592 flow cytometry data from UPMC 
achieving 94.1 % accuracy and 99.6 % AUC [17]; and 3) AML MRD 
assessment with 209 flow cytometry data from Mayo Clinic showing 88 
% accuracy and 91.3 % AUC [18]. 4) AML MRD assessment with 1040 
MFC data from Roswell Park Comprehensive Cancer Center (RPCCC) 
[19], 5) Automatic hematologic malignancy classification on Munich 
Leukemia Laboratory (MLL) data [20]. These findings suggest that 
AI-driven classification of flow cytometry data is not only fast and highly 
accurate but could also enhance the efficiency of specimen triage.

Our feature selection analysis from these above-mentioned studies 
revealed that we could develop classifiers that perform comparably 
using only a subset of parameters from the entire panel. Given the 
overlap of common parameters in various panels for diagnosing hema
tological diseases, we hypothesize that our methods could be utilized 
across different panels and instruments, employing shared parameters to 
develop classifiers effectively.

In this study, we employed datasets collected from five sites with 
different panel and instrument usage scenarios, and utilized our previ
ously developed machine learning framework to develop cross-panel 
sample classification for AML and non-neoplastic conditions.

2. Materials and methods

2.1. Flow cytometry datasets

Retrospective clinical FC datasets from five different institutions 
were collected for this study: National Taiwan University Cancer Center 
(NTUCC) in Taiwan, Roswell Park Comprehensive Cancer Center 
(RPCCC) in United States, Taichung Veteran General Hospital (VGH) in 
Taiwan, University of Pittsburgh (UPMC) in United States, and National 
Taiwan University Hospital (NTUH) in Taiwan. Bone marrow (BM) 
specimens were collected and analyzed with the standard diagnostic 
protocols at each clinical FC laboratory for the identification of acute 
myeloid leukemia (AML) or non-neoplastic hematological conditions 
including cytopenia(s), and the diagnosis of AML was made according to 
WHO 2016 classification [21] in all centers. Prior to the study’s initia
tion, all biospecimens and their corresponding FCS files were 
de-identified. A total of 110 AML and 105 non-neoplastic FC samples 
were collected for training and cross-validating our approach. Detailed 
descriptions including dataset sources, types of instruments and panel, 
and case number are listed in Table 1a. With the exception of 9 
non-neoplastic cases from NTUCC, which were monitored for AML re
sidual disease (MRD) and interpreted as negative, all other samples were 
collected at first diagnosis. These cases were measured with five types of 
panels, including Euroflow AML/MDS, ClearLLab 10C, and three 
different laboratory developed test (LDT) panels, and acquired from 
three different instrument models, including BD FACSCantoII, BD 
FACSLyric, and Beckman Coulter NaviosEX. Each panel used a unique 
combination of markers and channels for AML and non-neoplastic 
diagnosis, as outlined in Supplementary Table S1. Of these, sixteen pa
rameters were shared across all panels: FSC-A, FSC-H, SSC-A, CD7, 
CD11b, CD13, CD14, CD16, CD19, CD33, CD34, CD45, CD56, CD64, 
CD117, and HLA-DR.

In addition to the training datasets, we collected 90 AML and 106 
non-neoplastic FC samples, as described in Table 1b, for use as inde
pendent validation datasets to assess the performance of the model’s 
classification. These samples were not included in any model training. 
Non-neoplastic samples from NTUCC, RPCCC, and NTUH were MRD 
negative cases. AML cases from RPCCC and NTUH were MRD cases with 
residual disease percentage greater than 80 % and 50 %, respectively. 
Except for the samples from RPCCC, all validation samples were 
measured using the same instrument models and panels as the corre
sponding training datasets. However, the cases from RPCCC were 
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measured using panels specifically designed for AML MRD monitoring, 
with several different combinations of tubes employed. Detailed de
scriptions of the RPCCC panels are provided in Supplementary Table S2.

This study was approved by the Institutional Review Boards (IRBs) in 
accordance with the Declaration of Helsinki. The IRB approval codes for 
each institution are as follows: RPCCC-STUDY00001445, TCVGH- 
SE20116A, NTUCC-202204104RS, UPMC-STUDY21080145, and 
NTUH-201906018RINB, while informed consents are waived in all 
approvals.

2.2. Machine learning based sample classification framework

We developed a comprehensive machine learning based framework 
for cross-panel flow cytometry analysis. The workflow consists of four 
primary components: parameter alignment, data preprocessing, sample- 
level representation encoding, and classification, as illustrated in Fig. 1. 
This section details each component and its implementation.

2.2.1. Parameter alignment and data preprocessing
The initial preprocessing stage is crucial for ensuring compatibility 

across different panels and data quality. Raw FC data undergoes 
sequential processing steps: 

1. Parameter alignment to extract common parameters presented 
across all panels

2. Application of compensation matrices to correct fluorescence spill
over between channels

3. Random down-sampling per sample to ensure computational 
efficiency

4. Max-min normalization of fluorescent channel values to standardize 
measurements

Each preprocessed FC data X ∈ RT×D is utilized for the following 
sample-level representation encoding and classification, where T is the 
total cell number across tubes of one FC sample and D is the number of 
common parameters measured across all panels.

2.2.2. Sample-level encoding with Fisher vector
The sample encoding process employs a two-stage approach to 

transform variable-length flow cytometry data into fixed-length 

Table 1 
Training and validation set across different institutions.

1a) Training and Validation Datasets

Dataset NTUCC RPCCC VGH UPMC NTUH All Sites

Flow Panel Euroflow AML/MDS ClearLLab 10C LDT LDT LDT 5 panels
Instrument BD FACSLyric Navios EX BD FACSCantoII BD FACSCantoII BD FACSCantoII 3 models
Number of tubes 7 4 4 4 13 ​
File format FCS3.1 FCS3.0 FCS3.0 FCS3.0 FCS2.0 ​
Average Event Per Tube 600,000 70,000 260,000 28,000 100,000 ​
Sample Number (AML, non-neoplastic) 17, 19 27, 21 17, 18 24, 25 25, 22 110, 105

1b) Independent Validation Datasets

Dataset NTUCC RPCCC VGH UPMC NTUH All sites

Flow Panel Euroflow AML/MDS AML MRD LDT LDT LDT LDT 5 panels
Instrument BD FACSLyric BD FACSCantoII BD FACSCantoII BD FACSCantoII BD FACSCantoII 2 models
Number of tubes 7 5 4 4 13 ​
File format FCS3.1 FCS3.0 FCS3.0 FCS3.0 FCS2.0 ​
Average Event Per Tube 600,000 700,000 260,000 28,000 100,000 ​
Sample Number (AML, non-neoplastic) 16, 16 18, 17 6, 31 25, 25 25, 17 90, 106

Abbreviation: NTUCC: National Taiwan University Cancer Center, RPCCC: Roswell Park Comprehensive Cancer Center, VGH: Taichung Veterans General Hospital, 
UPMC: University of Pittsburgh Medical Center, NTUH: National Taiwan University Hospital, AML: Acute Myeloid Leukemia, MDS: Myeloid Dysplastic Syndrome, 
LDT: laboratory developed test.

Fig. 1. Workflow of the presented panel-agnostic machine learning (ML) approach for AML versus non-nonneoplastic sample classification. This workflow 
is based on our previous sample classification method for a single panel. Common markers/parameters across different panels are selected and rearranged first before 
following cross-panel analysis.
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representations suitable for machine learning analysis. 

Stage 1: Gaussian Mixture Model Modeling

The Gaussian Mixture Model (GMM) is trained through an 
expectation-maximization algorithm with the cell distribution of each 
FC sample to obtain a set of parameters λ: 

λ=ωk, μk, σk; k = 1...K 

where ωk, μk, and σk represent respectively the mixing weights, mean 
vectors, and covariance matrices of k-th Gaussian component. K denotes 
the total number of Gaussian components. For a single cell data xt ∈ X, 
the GMM probability density function is defined as: 

P(xt | λ)=
∑K

k=1
ωkPk(xt | ωk, μk )

Stage 2: Fisher Vector Computation

The Fisher Vector encoding quantifies the sample distribution’s de
viation from the modeled GMM through first and second-order statistics. 
The first-order and second-order statistics are computed as: 

gX
μk
=

1
T ̅̅̅̅̅̅ωk
√

∑T

t=1
γt(k)

(
xt − μk

σk

)

gX
σk
=

1
T

̅̅̅̅̅̅̅̅
2ωk

√
∑T

t=1
γt(k)

((
xt − μk

σk

)2

− 1
)

where γt(k) represents the posterior probability for xt: 

γt(k)=P
(
i | xt , λ

)
=

ωiPi(λ)
∑N

j=1
ωjPj(λ)

This process generates a high-dimensional feature vector F with 
dimensionality 2KD, where K is the component number of modeled 
GMM and D is the number of FC parameters.

2.2.3. Support Vector Machine classification
The computed Fisher Vectors serve as the input to a linear Support 

Vector Machine (SVM) classifier. The SVM optimization problem is 
formulated as: 

min
w,b,ξ

1
2
||w||

2
+ C

∑

i
ξi 

subject to : yi
(
wTϕ(xi)+ b

)
≥ 1 − ξi, ξi ≥ 0 

2.2.4. Algorithm implementation
The procedures of training and predicting algorithms for the pre

sented classification method are described as below: 

Algorithm 1. Flow Cytometry Classification Training
Input: 1. Preprocessed FC data X, where X ∈ RT×D 

2. Clinical diagnosis Y for corresponding X, where 
Y ∈ [AML,non–neoplastic]

Output: 1. Parameters for trained GMM 
2. Parameters for trained SVM 

Procedure: 
1 Train GMM with training FC data X
2 Compute feature vector F with trained GMM and Fisher Vector encoding for each FC 

data X
3 Train SVM with feature vectors F and corresponding clinical diagnosis Y

Algorithm 2. Flow Cytometry Classification Predicting
Input: 1. Preprocessed FC data Xʹ , where Xʹ ∈ RT×D and Xʹ ∕∈ training data X 

2. Parameters for trained GMM 
3. Parameters for trained SVM 

Output: 1. Prediction label Yʹ 

2. Prediction probability Pʹ 

Procedure: 
1 Compute feature vector Fʹ with trained GMM and Fisher Vector encoding for each 

FC data Xʹ

2 Output predicted diagnosis label Yʹ and prediction probability Pʹ for each FC case 
with feature vector Fʹ and trained SVM

2.3. Sample classifier performance evaluation

The workflow predicts diagnostic labels with probabilities for each 
sample. In this study, the applicability and accuracy of this algorithm is 
evaluated across five diagnostic laboratories using different reagent 
panels. The model was trained and validated with 3-fold cross valida
tion. The classification performance was evaluated by area under the 
receiver operating characteristic curve (AUC), accuracy (defined as the 
concordance of model prediction to the ground truth), sensitivity (true 
positive rate, TPR), specificity (true negative rate, TNR), false negative 
rate (FNR), and false positive rate (FPR). Notably, the threshold, a cutoff 
value applied to the model’s predicted probabilities, on the ROC curve 
can be adjusted to balance the TPR and TNR, allowing optimization of 
the model’s sensitivity or specificity depending on clinical priorities.

2.4. Classification result visualization

The prediction result would be presented in two sample-level visu
alizations. The first one is a 3D visualization. This method includes 
principal component analysis (PCA) -compressed features and predic
tion probabilities as visualization coordinates. The second method is 
Ranked prediction probabilities visualization. The predicted probability 
for each FC case is ranked to observe the probability threshold of 
wrongly predicted cases.

2.5. Explainability analysis

The importance of each FC parameter to the sample classification 
was assessed with three methods, including Single Parameter Selected 
experiment, Single Parameter Masked experiment, and Forward 
Sequential Feature Selection. The first method trains and validates the 
model with one of the original parameters alone and compares all ob
tained performance to see which parameter achieves better by itself. The 
second approach trains the model with the original parameter set, but 
validates it with one of the parameters being masked with zero value. 
The last method selects a relevant parameter subset from the original set 
by starting with an empty parameter set and iteratively adding a 
parameter that improves model performance the most at each parameter 
count.

2.6. Software and programming resources

All experiments were conducted using programs coded with Python 
3.8 on a Linux server (Ubuntu 22.04). This platform includes 48 Intel(R) 
Xeon(R) CPUs and 500 GB of RAM for data analysis.

3. Results

3.1. Cross-site AML vs non-neoplastic sample classification

We evaluated the feasibility and performance of cross-panel AML 
and non-neoplastic sample classification using various dataset and 
parameter combinations. Table 2 summarizes the results of eleven 
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classification models, trained and tested under different configurations. 
Models A to E were trained on individual datasets using site-specific 
parameters, while Models F to J were trained using individual datasets 
but constrained to the 16 parameters commonly measured across all five 
flow cytometry panels. Finally, Model K was trained on the combined 
datasets from all five sites using the same 16 common parameters: FSC- 
A, FSC-H, SSC-A, CD7, CD11b, CD13, CD14, CD16, CD19, CD33, CD34, 
CD45, CD56, CD64, CD117, and HLA-DR.

Models A to E, which utilized an expanded feature set specific to each 
site, achieved AUCs between 99.48 % and 100 %. Models F to J, trained 

on individual datasets with the 16 common parameters, achieved 
comparable classification performance, with AUC values ranging from 
98.96 % to 100 % (Table 2). Performance across models trained on the 
same dataset was largely consistent, with only marginal performance 
differences. For example, Model C and Model H (both trained on the 
VGH dataset) achieved identical results: AUC of 100 %, accuracy of 
94.19 %, sensitivity of 87.78 %, and specificity of 100 %. Models trained 
on NTUH datasets (Models E and J) demonstrated equivalent AUC of 
100 % and accuracy of 100 %.

Model K, the panel-agnostic classifier trained on all datasets 

Table 2 
Model performance with different datasets and parameter sets.

2a) Performance of models trained with site-dependent parameters

Model A B C D E

Dataset NTUCC RPCCC VGH UPMC NTUH

Panel Euroflow AML/MDS ClearLLab 10C LDT LDT LDT
Site-Dependent Parameter (n) 23 31 22 30 21
Instrument BD FACSLyric Navios EX BD FACSCantoII BD FACSCantoII BD FACSCantoII
Sample Number (AML, non-neoplastic) 17, 19 27, 21 17, 18 24, 25 25, 22
AUC 100.00 % 100.00 % 100.00 % 99.48 % 100.00 %
Accuracy 97.22 % 97.92 % 94.19 % 97.92 % 100.00 %
Sensitivity 94.44 % 96.30 % 87.78 % 100.00 % 100.00 %
Specificity 100.00 % 100.00 % 100.00 % 95.83 % 100.00 %
FNR 5.56 % 3.70 % 12.22 % 0.00 % 0.00 %
FPR 0.00 % 0.00 % 0.00 % 4.17 % 0.00 %

2b) Performance of models trained with common parameters across panels

Model F G H I J K

Dataset NTUCC RPCCC VGH UPMC NTUH All Sites

Panel Euroflow AML/MDS ClearLLab 10C LDT LDT LDT 5 panels
Parameters (n) 16 common parametersa across all panels
Instrument BD FACSLyric Navios EX BD FACSCantoII BD FACSCantoII BD FACSCantoII 3 models
Sample Number (AML, non-neoplastic) 17, 19 27, 21 17, 18 24, 25 25, 22 110, 105
AUC 100.00 % 99.47 % 100.00 % 98.96 % 100.00 % 99.82 %
Accuracy 94.44 % 93.75 % 94.19 % 95.83 % 100.00 % 98.15 %
Sensitivity 88.89 % 96.30 % 87.78 % 95.83 % 100.00 % 97.30 %
Specificity 100.00 % 90.48 % 100.00 % 95.83 % 100.00 % 99.05 %
FNR 11.11 % 3.70 % 12.22 % 4.17 % 0.00 % 2.70 %
FPR 0.00 % 9.52 % 0.00 % 4.17 % 0.00 % 0.95 %

(a) Models A to E were trained with individual dataset and parameters. (b) Model F to J were trained with individual dataset, but only using common parameters across 
different panels. Model K was trained with all five datasets and common parameters.
Abbreviation: AML: Acute Myeloid Leukemia, NTUCC: National Taiwan University Cancer Center, RPCCC: Roswell Park Comprehensive Cancer Center, VGH: Tai
chung Veterans General Hospital, UPMC: University of Pittsburgh Medical Center, NTUH: National Taiwan University Hospital, AUC: area under the receiver operating 
characteristic curve, FNR: false negative rate, FPR: false positive rate.
** All metric values are the averaged performance across three-fold cross validation.

a Common parameters: FSC-A, FSC-H, SSC-A, CD7, CD11b, CD13, CD14, CD16, CD19, CD33, CD34, CD45, CD56, CD64, CD117, and HLA-DR.

Fig. 2. Receiver operating characteristic (ROC) curve of Model K and its performance with different thresholds. The blue line represents the ROC curve of 
Model K, along with the black points as different classification thresholds. By adjusting the threshold, the workflow is able to regulate its prediction capability on 
AML and non-neoplastic samples.
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combined and using only the 16 common parameters, demonstrated 
outstanding performance, achieving an AUC of 99.82 % and accuracy of 
98.15 %. This result highlights the utility of the reduced, standardized 
parameter set for cross-panel applicability without compromising 
diagnostic performance.

The receiver operating characteristic (ROC) curve of Model K (Fig. 2) 
shows flexibility in performance depending on the selected threshold. At 
threshold T2, Model K achieved an accuracy of 98.14 %, a sensitivity of 
98.18 %, and specificity of 98.10 %. When the threshold was adjusted to 
T1 to prioritize specificity, the model achieved perfect specificity (100 
%) but slightly lower sensitivity (93.64 %) and accuracy (96.74 %). 
Conversely, at threshold T3, the model maximized sensitivity (100 %) 
while slightly reducing accuracy (95.81 %) and specificity (91.43 %). 
These results demonstrate that the model can be adapted to different 
operational needs by optimizing the classification threshold. ROC curves 
and corresponding confusion matrices for all models (A through K) are 
presented in Supplementary Fig. S1.

3.2. Independent validation

Independent validation datasets were utilized to evaluate the 
generalizability of Model K, with performance metrics summarized in 
Table 3. Model K achieved an overall AUC of 98.71 % and an accuracy of 
93.88 %, effectively distinguishing AML-positive cases from non- 
neoplastic cases across the independent datasets. Of particular note, 
the RPCCC dataset, which was measured using the AML-MRD panel, 
contained panel compositions that were not included in the training 
dataset and incorporated several composition variations across different 
tubes (Supplementary Table S2). Despite this variability, Model K 
demonstrated robust performance on the RPCCC dataset, achieving an 
AUC of 100 %, accuracy of 97.14 %, sensitivity of 100 %, and specificity 
of 94.12 % (Table 3). These findings underscore the model’s flexibility 
and resilience in accurately classifying AML and non-neoplastic cases 
across diverse datasets and panel configurations.

3.3. Visualization of classification results

To further interpret and compare classification results, we deployed 
3D visualizations (Fig. 3a) and ranked prediction probability distribu
tion plots (Fig. 3b and c) to assess Model K’s performance based on its 
predictions and ground truth labels. In the 3D visualization, each point 
represents a single flow cytometry (FC) case, with the center color 
indicating the ground truth diagnosis and the edge color representing 
the predicted label. Out of the 215 cases analyzed, Model K produced 
four discordant predictions, as detailed in Supplementary Table S3.

The 3D visualization (Fig. 3a), based on principal component anal
ysis (PCA)-compressed features, demonstrated clear separation between 
AML and non-neoplastic cases, highlighting Model K’s ability to extract 

meaningful, panel-agnostic sample-level features. The ranked prediction 
probability plots (Fig. 3b) revealed that misclassifications occurred 
when AML prediction probabilities dipped below 45.69 % or when non- 
neoplastic probabilities dropped below 28.47 %. Similarly, Fig. 3c, 
which emphasizes independent validation datasets represented in 
deeper colors, showed misclassifications when AML probabilities fell 
below 46.62 % or non-neoplastic probabilities fell below 41.68 %. 
Discordant cases identified within the independent validation datasets 
are listed in Supplementary Table S4.

These visualizations effectively highlight Model K’s performance and 
its ability to generalize across diverse datasets, while clearly identifying 
the thresholds at which misclassifications occur. This approach further 
emphasizes Model K’s consistency, and interpretability in accurately 
classifying AML and non-neoplastic cases, even across varying panel 
configurations.

3.4. Assessing contribution of features to model performance

We implemented multiple feature selection approaches to evaluate 
the relative contribution of each parameter to Model K’s classification 
performance and to assess parameter interactions and their effect on 
model performance. Fig. 4 illustrates the individual contributions of the 
16 common parameters to Model K’s performance. In single-parameter 
training experiments, AUC values ranged from 62.9 % (CD13) to 96.9 
% (CD117), while accuracy values ranged between 57.7 % (CD13) and 
91.2 % (SSC-A). The most influential parameters, each achieving an AUC 
above 82 %, were identified as CD117, SSC-A, CD34, HLA-DR, and 
CD16. Conversely, CD13, CD56, and CD45 demonstrated lower indi
vidual impact, with AUC values lower than 65 %.

Parameter masking experiments revealed the critical importance of 
specific markers in the classification process. During these experiments, 
individual parameters were systematically masked during model vali
dation, and the impact on performance was assessed using AUC and 
accuracy metrics. HLA-DR, CD117, CD64, and CD56 emerged as 
particularly crucial parameters, with their masking resulting in sub
stantial performance decreases: AUC reductions of 43.09 %, 24.89 %, 
4.50 %, and 3.15 % (Fig. 5a), respectively, and accuracy decreases of 
48.38 %, 45.14 %, 26.01 %, and 26.02 % (Fig. 5b). The marked 
reduction in accuracy following HLA-DR and CD117 masking un
derscores their significance in distinguishing between AML and non- 
neoplastic cases. Notably, while CD64 and CD56 showed modest and 
poor performance in single-parameter analysis, their substantial impact 
in masking experiments suggests their value lies primarily in synergistic 
interactions with other parameters rather than as standalone markers.

Forward sequential feature selection was employed to evaluate the 
interaction and relative importance of different parameter combina
tions. A total of 136 parameter combinations were assessed, with 
detailed results presented in Supplementary Table S5.

Table 3 
Performance model K on independent validation datasets.

Independent Validation Dataset NTUCC RPCCC VGH UPMC NTUH All Sites

Panel Euroflow AML/MDS AML MRD LDT LDT LDT LDT 5 panels
Parameters (n) 16 common parametersa across all panels from training datasets
Instrument BD FACSLyric BD FACSCantoII BD FACSCantoII BD FACSCantoII BD FACSCantoII 2 models
Sample Number (AML, non-neoplastic) 16, 16 18, 17 6, 31 25, 25 25, 17 90, 106
AUC 100.00 % 100.00 % 100.00 % 96.96 % 98.12 % 98.71 %
Accuracy 96.88 % 97.14 % 97.30 % 90.00 % 90.48 % 93.88 %
Sensitivity 93.75 % 100.00 % 83.33 % 96.00 % 100.00 % 96.67 %
Specificity 100.00 % 94.12 % 100.00 % 84.00 % 76.47 % 91.51 %
FNR 6.25 % 0.00 % 16.67 % 4.00 % 0.00 % 3.33 %
FPR 0.00 % 5.88 % 0.00 % 16.00 % 23.53 % 8.49 %

Abbreviation: NTUCC: National Taiwan University Cancer Center, RPCCC: Roswell Park Comprehensive Cancer Center, VGH: Taichung Veterans General Hospital, 
UPMC: University of Pittsburgh Medical Center, NTUH: National Taiwan University Hospital, LDT: laboratory developed test, AUC: area under the receiver operating 
characteristic curve, FNR: false negative rate, FPR: false positive rate.

a Common parameters: FSC-A, FSC-H, SSC-A, CD7, CD11b, CD13, CD14, CD16, CD19, CD33, CD34, CD45, CD56, CD64, CD117, and HLA-DR.
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Table 4 summarizes the best-performing parameter combination for 
each parameter count. Using CD117 alone, the model achieved an AUC 
of 96.92 %, consistent with its strong performance in single-parameter 

selection. As additional parameters were incorporated, the AUC 
remained relatively stable with minor fluctuations. A seven-parameter 
subset (FSC-A, SSC-A, CD11b, CD13, CD33, CD56, CD117) achieved 

Fig. 3. Prediction visualization of Model K. (a) 3D visualization with principal component analysis (PCA) -compressed features and prediction probabilities. (b) 
Ranked prediction probabilities. (c) Ranked prediction probabilities of both original datasets and independent validation datasets. Each dot represents a FC case. 
Wrongly predicted cases are noted with opposite color on the edge.

Fig. 4. Results of Single Parameter Selected experiment. This experiment assesses the importance of each parameter by training and cross-validating the pre
sented workflow with only one marker.

Fig. 5. Performance difference of Single Parameter Masked experiment and Model K. This experiment assesses the parameter importance by cross-validating 
Model K (trained with all dataset and common parameters) with one parameter masked with zero value. The more performance dropped, the more important the 
parameter was.

Y.-F. Wang et al.                                                                                                                                                                                                                                Computers in Biology and Medicine 193 (2025) 110394 

7 



optimal performance, with an AUC of 100 % and accuracy and 99.54 %, 
and slightly surpassed the original parameter set.

4. Discussion

4.1. Panel-agnostic framework and parameter reduction

Achieving consensus on flow cytometry panel compositions for 
similar clinical applications remains a challenge due to variability in 
laboratory practices, instrumentation, and evolving technological ad
vancements. Recognizing this variability, we propose a flexible, panel- 
agnostic framework that accommodates differences in marker panels 
and instrument models while providing standardized classification so
lutions to reduce the analytical burden on laboratories.

Previous studies from our group have demonstrated that machine 
learning (ML)-based classification of acute myeloid leukemia (AML) 
samples can maintain high performance even with reduced parameter 
sets [16,17,19]. For instance, our UPMC single-center study showed that 
a model trained on just four parameters (FSC-A, FSC-H, SSC-H, and 
CD117) achieved 91.9 % accuracy, compared to 94.2 % accuracy when 
utilizing all 37 parameters [17]. In the current study, our panel-agnostic 
approach using 16 common parameters demonstrated equivalent per
formance across both training datasets (Table 2) and independent vali
dation datasets (Table 3). These findings underscore the potential for 
further parameter reduction while maintaining robust classification 
performance across diverse laboratory settings.

4.2. Model performance and feature selection

The receiver operating characteristic (ROC) curve analysis (Fig. 2) 
demonstrated the flexibility of classification thresholds, which can be 

adjusted to optimize either specificity (minimizing false positives) or 
sensitivity (minimizing false negatives). When combined with the 
sample visualization approach (Fig. 3), the model’s predictions and 
associated probabilities provide valuable decision support for objective, 
sample-level classification and efficient prioritization of cases requiring 
manual review.

Feature selection analysis of Model K (Fig. 4) identified CD117, HLA- 
DR, CD34, SSC-A, and CD16 as particularly informative parameters, 
each capable of achieving >85 % AUC in AML versus non-neoplastic 
classification independently. Parameter masking experiments (Fig. 5) 
revealed that individual masking of HLA-DR, CD117, CD64, and CD56 
resulted in the most substantial performance decreases, with AUC re
ductions and accuracy drops exceeding 20 %. Forward feature selection 
analysis (Table 4) further confirmed the importance of CD117, SSC-A, 
and CD56 among the 16 common parameters. These findings align 
with the biological significance of these markers: CD117 (c-lit), a tyro
sine kinase receptor expressed on early myeloid progenitor, serves as a 
crucial role for confirming the myeloid origin of blast cells, determining 
their maturation stage, and even harboring therapeutic implications 
with tyrosine kinase inhibitors [22,23]. CD34 is a marker of hemato
poietic stem and early progenitor cells, and its expression indicates a 
high proportion of immature blasts, which is a common feature of many 
AML cases [24]. CD16 expression is typically associated with mature 
neutrophils and natural killer cells. In the context of AML, its expression 
helps determine the degree of differentiation, especially in cases where 
blasts show granulocytic maturation [24]. HLA-DR, a major histocom
patibility complex class II antigen, is instrumental in distinguishing AML 
subtypes. Although most AML cases express HLA-DR, its absence is a 
hallmark of acute promyelocytic leukemia (APL), a subtype with unique 
clinical intervention [25]. CD56 is predominantly expressed in NK cells 
[22]. Moreover, previous studies have demonstrated that aberrant CD56 
expression in AML correlates with poor prognosis [26,27]. Taking 
together, CD34 confirms the immature nature of the blasts, HLA-DR 
helps in distinguishing AML subtypes (notably the HLA-DR-negative 
APL), CD117 supports the myeloid lineage identification and can hint 
at underlying genetic mutations, CD16 indicates the degree of differ
entiation in granulocytic lineage cells, and CD56 identifies aberrant 
expression patterns of AML blasts. It is therefore not surprising that these 
markers are critical for our cross-institute model performance.

Notably, quantum yield of the fluorochromes is not likely to impact 
the model performance of our algorithm. With the information on the 
fluorochromes used for the top-performing single features, i.e. CD117, 
CD34, HLA-DR and CD16, we can observe that the markers were con
jugated to fluorochromes with varying brightness levels (dim to bright) 
across centers (Supplement Table S6). The finding suggests that the 
brightness or quantum yield of the fluorophore alone may not signifi
cantly account for classification performance. Instead, our data pro
cessing framework, coupled with the inherent characteristics of the 
Gaussian Mixture Model, appears to effectively mitigate fluorescence 
intensity variability. This enables the encoding of biologically relevant 
features from the data, resulting in robust sample-level classification 
regardless of fluorochrome intensity.

Model performance variability was still observed to some extent in 
our study and can be attributed to certain intrinsic differences between 
institutions. For example, the average event number per tube was 
significantly lower in the UPMC dataset, which may have affected 
sample representation (Tables 1a and 1b). Additionally, the FCS file 
format used in the NTUH dataset was FCS2.0, whereas other datasets 
employed FCS3.0 or FCS3.1. These differences, along with other site- 
specific factors such as panel variability, sample handling, and instru
ment calibration, may partially explain why the cross-panel model 
exhibited differing performance across subsets. One practical approach 
to mitigate these site-specific differences is to implement institution- 
specific probability thresholds when applying the model. As illustrated 
in Fig. 2, adjusting the classification threshold allows for an optimized 
balance between sensitivity and specificity based on local validation 

Table 4 
Results of forward sequential feature selection.

Count Parameter Subset Added AUC ACC

1 CD117 CD117 96.92 % 90.23 %
2 SSC-A, CD117 SSC-A 99.01 % 94.88 %
3 SSC-A, CD11b, CD117 CD11b 99.97 % 98.6 %
4 SSC-A, CD11b, CD13, CD117 CD13 100.0 % 99.53 %
5 FSC-A, SSC-A, CD11b, CD13, CD117 FSC-A 100.0 % 99.53 %
6 FSC-A, SSC-A, CD11b, CD13, CD33, 

CD117
CD33 100.0 % 98.60 %

7 FSC-A, SSC-A, CD11b, CD13, CD33, 
CD56, CD117

CD56 100.0 % 99.54 %

8 FSC-A, SSC-A, CD11b, CD13, CD33, 
CD34, CD56, CD117

CD34 100.0 % 98.14 %

9 FSC-A, FSC-H, SSC-A, CD11b, CD13, 
CD33, CD34, CD56, CD117

FSC-H 100.0 % 98.60 %

10 FSC-A, FSC-H, SSC-A, CD11b, CD13, 
CD16, CD33, CD34, CD56, CD117

CD16 100.0 % 98.60 %

11 FSC-A, FSC-H, SSC-A, CD11b, CD13, 
CD16, CD33, CD34, CD45, CD56, 
CD117

CD45 100.0 % 99.07 %

12 FSC-A, FSC-H, SSC-A, CD11b, CD13, 
CD14, CD16, CD33, CD34, CD45, 
CD56, CD117

CD14 100.0 % 98.60 %

13 FSC-A, FSC-H, SSC-A, CD11b, CD13, 
CD14, CD16, CD19, CD33, CD34, 
CD45, CD56, CD117

CD19 100.0 % 98.61 %

14 FSC-A, FSC-H, SSC-A, CD11b, CD13, 
CD14, CD16, CD19, CD33, CD34, 
CD45, CD56, CD64, CD117

CD64 99.97 % 98.61 %

15 FSC-A, FSC-H, SSC-A, CD11b, CD13, 
CD14, CD16, CD19, CD33, CD34, 
CD45, CD56, CD64, CD117, HLA-DR

HLA- 
DR

99.97 % 98.15 %

16 FSC-A, FSC-H, SSC-A, CD7, CD11b, 
CD13, CD14, CD16, CD19, CD33, 
CD34, CD45, CD56, CD64, CD117, 
HLA-DR

CD7 99.82 % 98.15 %

Abbreviation: AUC: area under the receiver operating characteristic curve, ACC: 
Accuracy.
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results. Through this customized calibration approach, institutions can 
effectively manage their predominant challenges by selectively reducing 
false positives or false negatives according to their specific needs. 
Moving forward, we can enhance cross-site performance consistency 
through optimized harmonization strategies and model refinement 
using expanded, multi-institutional datasets.

4.3. Analysis of misclassified cases

To investigate potential sources of discordance, we performed a 
detailed manual review of cases misclassified by Model K. In the cross- 
validation analysis, four discordant cases were identified: three AML 
cases incorrectly classified as non-neoplastic (with probabilities of 
16.42 %, 16.82 %, and 45.69 %, respectively) and one non-neoplastic 
case misclassified as AML (with a probability of 28.47 %, Supplemen
tary Table S3). Analysis of the independent validation datasets revealed 
additional misclassifications, including three AML cases incorrectly 
identified as non-neoplastic (with probabilities of 16.95 %, 35.31 %, and 
46.62 %, respectively) and nine non-neoplastic cases from RPCCC, 
UPMC, and NTUH that were misclassified as AML (with probabilities 
ranging from 0 % to 41.68 %, Supplementary Table S4). Notably, all 
misclassifications occurred with relatively low prediction probabilities, 
suggesting that implementing probability thresholds could effectively 
flag these cases for manual review.

Selected scatter plots from the manual analysis are provided in 
Supplementary Fig. S2. A breakdown of misclassified cases is detailed 
below.

4.4. AML cases misclassified as non-neoplastic

A total of six AML cases were misclassified as non-neoplastic: three in 
the cross-validation set (Supplementary Table S3) and three in the in
dependent validation set (Supplementary Table S4). Within the RPCCC 
dataset, two AML cases were misclassified (Supplementary Fig. S2a–1 & 
2); both displayed a higher proportion of monocytes that were CD64- 
positive but only partially CD14-positive. Similarly, two AML cases 
from VGHTC were also misclassified (Supplementary Fig. S2a–3 & 4). 
One case revealed a prominent abnormal population within the 
CD45dim region, which was positive for CD13, CD34, CD117, and 
CD56, but showed dim expression of HLA-DR (Supplementary 
Fig. S2a–3). The other case suffered from poor specimen quality, with 
over 50 % of events negative for CD45, while the abnormal population 
was positive for CD13, CD34, CD117, CD33, CD7, and HLA-DR 
(Supplementary Fig. S2a–4). Additionally, one NTUHCC case was mis
classified, exhibiting a CD34− , HLA-DR- phenotype while being positive 
for CD117, CD11b, CD13, CD33, and CD38 in the CD45dim gate 
(Supplementary Fig. S2a–5). Furthermore, one AML case from UPMC 
was misclassified as non-neoplastic. However, a manual review 
concluded that there was no flow evidence of leukemia (Supplementary 
Fig. S2a–6). This case illustrates how the AI prediction model can assist 
in identifying instances that may be misinterpreted during routine 
evaluations.

Excluding the one case requiring diagnosis revision to non-neoplastic 
disease, the blast percentage of the remaining 5 misclassified cases 
showed no statistically significant difference compared to AML cases in 
the cross- and independent validation cohorts (median ± standard de
viation: 38.8 ± 18.3 % vs. 43.1 ± 14.8 %), suggesting blast percentage 
was not a critical predictive feature for the model. Notably, after 
reviewing the immunophenotypes of our mis-classified cases and inde
pendent test ones, we found that 60 % (3/5) of the misclassified AML 
cases lacked CD34 expression, which was higher than the overall fre
quency 23.3 % (21/90) in our independent validation dataset. Given 
that CD34 emerged as a heavily weighted feature for AML classification, 
its absence likely contributed significantly to these misclassification 
events, highlighting a model limitation in identifying CD34-negative 
cases. Similarly, HLA-DR-negative cases were overrepresented among 

misclassifications, with 40 % (2/5) lacking HLA-DR expression 
compared to 14.4 % (13/90) in the validation cohort. CD117-negative 
expression was observed in one misclassified case (20 %) versus 16.6 
% (15/90) in the validation dataset. In general, reduced expression of 
CD34− and HLA-DR in leukemia cells seemed to impact substantially on 
model performance, likely due to their relative underrepresentation in 
our AML dataset. To address this limitation in the future, future itera
tions of the model could benefit from a more balanced cohort enriched 
with CD34-negative and/or HLA-DR-negative AML cases, thereby 
improving classification accuracy for these clinically important 
subtypes.

4.5. Non-neoplastic cases misclassified as AML

A total of ten non-neoplastic cases were misclassified as AML: one in 
the cross-validation set (Supplementary Table S3) and nine in the in
dependent validation set (Supplementary Table S4).

One misclassified case from NTUHCC was examined through manual 
review and revealed sparse myeloid progenitors, but marker expression 
was consistent with normal epitope density, providing no evidence of 
leukemia (Supplementary Fig. S2b–1). Another misclassified case from 
RPCCC was determined to be B-cell Acute Lymphoblastic Leukemia (B- 
ALL) upon review. The abnormal population in this case exhibited fea
tures of CD45 dim, CD13 dim, CD33 high, CD34 positive, CD38 bright, 
CD10 bright, and CD19 positive, consistent with a B-ALL immunophe
notype rather than AML (Supplementary Fig. S2b–2).

Four UPMC non-neoplastic cases were misclassified as AML. After 
manual review, two cases showed no evidence of acute leukemia 
(Supplementary Fig. S2b–3 & 6), one case was consistent with myelo
dysplastic syndrome (MDS), with an abnormal population showing 
distinct immunophenotypes (Supplementary Fig. S2b–4), and one case 
exhibited a paucity of granulocytes and a B-cell population that was 
insufficient to definitively support a diagnosis of leukemia 
(Supplementary Fig. S2b–5).

Lastly, four NTUH non-neoplastic cases were misclassified as AML. 
Upon manual review, it was found that two cases were consistent with 
AML (Supplementary Fig. S2b–7 & 8), one case displayed no evidence of 
acute leukemia (Supplementary Fig. S2b–9), and one case showed an 
atypical myeloid population that could not definitively support a diag
nosis of leukemia (Supplementary Fig. S2b–10).

4.6. Clinical implication and future direction

In conclusion, our findings demonstrate that machine learning-based 
approaches can effectively identify complex patterns and abnormalities 
in flow cytometry data while maintaining robust performance across 
diverse laboratory settings. The panel-agnostic framework we have 
developed offers several significant advantages: it enables the imple
mentation of simplified flow cytometry panels, ensures consistent 
analysis quality, and accommodates variations in panel composition and 
instrumentation across different laboratories. This flexibility allows 
operators to benchmark their results against expertly curated datasets, 
providing valuable quality assurance support. Moreover, the frame
work’s ability to maintain high diagnostic accuracy with reduced 
parameter sets makes it particularly valuable in resource-limited envi
ronments, where it can significantly decrease the analytical burden on 
laboratory personnel without compromising diagnostic standards. 
Future work will focus on extending this framework to support different 
clinical applications, such as multiple hematological malignancies 
classification and disease monitoring, further enhancing its utility across 
various clinical and research settings.
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