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ARTICLE INFO ABSTRACT
Keywords: Flow cytometry (FC) remains a cornerstone diagnostic tool for acute myeloid leukemia (AML), yet standardizing
Flow cytometry panels across laboratories presents persistent challenges. Our study introduces a validated machine learning

Acute myeloid leukemia
Machine learning

rotocols.
Universal algorithm P

framework enabling cross-panel AML classification by leveraging common parameters shared across diverse FC

We employed FC data from 215 samples (110 AML, 105 non-neoplastic) collected in five institutions using

different panel configurations as model training set, and another 196 similarly collected samples (90 AML and
106 non-neoplastic) for independent validation set. The framework employs GMM-SVM classification based on
16 common parameters (FSC-A, FSC-H, SSC-A, CD7, CD11b, CD13, CD14, CD16, CD19, CD33, CD34, CD45,
CD56, CD64, CD117, and HLA-DR) that are consistently present across various panel designs. The framework
demonstrated robust performance with 98.15 % accuracy, 99.82 % area under curve (AUC), 97.30 % sensitivity,
and 99.05 % specificity. Independent validation on 196 additional samples further confirmed the framework’s
effectiveness, maintaining high performance with 93.88 % accuracy and 98.71 % AUC.

This research establishes the viability of standardized FC analysis across diverse panel configurations and
instruments through machine learning implementation. The framework’s robust performance suggests promising
applications for harmonized multi-center FC analysis, potentially resolving current standardization challenges in

flow cytometry interpretation.

1. Introduction

Multiparameter Flow Cytometry (MFC) is vital for hematological
disease diagnostics and monitoring, with panels typically measuring 15
or more parameters. The difficulties associated with high-dimensional
data are amplified by the increasing use of fluorochrome/antibody

combinations and custom testing protocols, particularly in complex
leukemia and lymphoma tests. However, many laboratories still depend
on manual gating, a process that requires human experts to apply a
sequential gating procedure to large sets of bidimensional plots to
identify and label cell populations of interest. The expert-dependent
manual interpretation process is time-consuming, subjective, and
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prone to inter-interpreter variability. Furthermore, a shortage of trained
professionals in flow cytometry intensifies workloads, extends patient
wait times, and raises safety concerns. A survey of the clinical cytometry
workforce revealed that the vacancy rate for clinical flow cytometry
technologists tripled from 2014 to 2022, while the retirement rate
surged significantly from 2020 to 2022 [1,2]. Increasing clinical flow
cytometry test demand coupled with a lack of trained professionals
further complicates access to cytometry technologies and their appli-
cation across various fields.

Differences in assay design, reagent choices, and interpretation
practices often lead to inconsistent results and complicate standardiza-
tion. In the past decades, there were many attempts to develop guidance
and consensus for flow cytometry panels in various applications from
cell sorting [3], PNH [4], multiple myeloma (MM) measurable residual
disease (MRD) [5], acute myeloid leukemia (AML) MRD [6,7], and
B-ALL MRD [8]. However, it remains challenging to achieve consensus
among laboratories regarding panel design for particular clinical ap-
plications. Various institutions may prioritize different markers based on
regional preferences, reagent availability, or historical methods,
resulting in diverse diagnostic practices for similar medical conditions.
This inconsistency complicates the comparison of patient results be-
tween labs and may impede collaborative clinical and translational
research.

Artificial intelligence (Al), particularly machine learning (ML), holds
significant potential for assisting physicians in managing hema-
tolymphoid diseases by simplifying the interpretation of complex flow
cytometry data. ML approaches have been applied to various aspects of
flow cytometry analysis, aiding in tasks such as diagnosis, risk stratifi-
cation, and predicting treatment responses. Numerous computational
solutions have been developed for specific applications, including
quality control algorithms to filter low-quality events (e.g., flowAl,
flowClean, PeaCoQC [9] and normalization algorithms to mitigate batch
effects (e.g., CytoNorm [10]). Approaches like clustering for automated
cell population identification utilize density-based methods such as
FlowSOM [11], while automated gating algorithms and dimensionality
reduction techniques, such as principal component analysis (PCA),
t-SNE, and PhenoGraph [12], enable improved visualization of flow
cytometry data.

More recently, deep learning methods have been implemented for
classification tasks, with examples like FlowCat and EnsembleCNN [13].
While many of these tools focus on identifying cell populations [14],
machine learning-driven approaches for disease classification using
MEFC data are also emerging. Such examples include UMAP-RF [13],
which classifies diseases, and CNN-based methods for subtype classifi-
cation of B-cell non-Hodgkin lymphomas (B-NHL) [15]. These de-
velopments demonstrate the growing potential of ML in advancing
clinical applications of flow cytometry.

Furthermore, many of these tools could only support data analysis
measured with the same panel, therefore, it is hard to apply the one
optimized pipeline developed to analyze one dataset readily applicable
to analyze data acquired using another flow cytometry panel. Addi-
tionally, several of these tools lack accessible interfaces and require
users to write computer languages such as R or Python, making them less
practical for clinical environments. This shortcoming emphasizes the
demand for better options for comprehensive immunophenotype
assessment. All of these phenomena underscore the urgent need for user-
friendly bioinformatic solutions that can efficiently analyze complex
flow cytometry data without requiring advanced programming skills.

Addressing these pressing issues requires a multifaceted approach
that includes the development of intuitive, automated analysis software,
improved training programs, standardized protocols to minimize vari-
ability, and initiatives aimed at enhancing job satisfaction and retention
for laboratory staff.

We have previously shown that supervised machine learning ap-
proaches can effectively identify leukemia at sample level through
multiple retrospective studies at single centers: 1) AML MRD assessment
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using 5333 flow cytometry data from National Taiwan University Hos-
pital (NTUH), achieving accuracies between 84.6 % and 92.4 % and
AUCs reaching between 92.1 % and 95.0 % [16]; 2) Acute leukemia
subtype classification with 592 flow cytometry data from UPMC
achieving 94.1 % accuracy and 99.6 % AUC [17]; and 3) AML MRD
assessment with 209 flow cytometry data from Mayo Clinic showing 88
% accuracy and 91.3 % AUC [18]. 4) AML MRD assessment with 1040
MEC data from Roswell Park Comprehensive Cancer Center (RPCCC)
[19], 5) Automatic hematologic malignancy classification on Munich
Leukemia Laboratory (MLL) data [20]. These findings suggest that
Al-driven classification of flow cytometry data is not only fast and highly
accurate but could also enhance the efficiency of specimen triage.

Our feature selection analysis from these above-mentioned studies
revealed that we could develop classifiers that perform comparably
using only a subset of parameters from the entire panel. Given the
overlap of common parameters in various panels for diagnosing hema-
tological diseases, we hypothesize that our methods could be utilized
across different panels and instruments, employing shared parameters to
develop classifiers effectively.

In this study, we employed datasets collected from five sites with
different panel and instrument usage scenarios, and utilized our previ-
ously developed machine learning framework to develop cross-panel
sample classification for AML and non-neoplastic conditions.

2. Materials and methods
2.1. Flow cytometry datasets

Retrospective clinical FC datasets from five different institutions
were collected for this study: National Taiwan University Cancer Center
(NTUCC) in Taiwan, Roswell Park Comprehensive Cancer Center
(RPCCCQ) in United States, Taichung Veteran General Hospital (VGH) in
Taiwan, University of Pittsburgh (UPMC) in United States, and National
Taiwan University Hospital (NTUH) in Taiwan. Bone marrow (BM)
specimens were collected and analyzed with the standard diagnostic
protocols at each clinical FC laboratory for the identification of acute
myeloid leukemia (AML) or non-neoplastic hematological conditions
including cytopenia(s), and the diagnosis of AML was made according to
WHO 2016 classification [21] in all centers. Prior to the study’s initia-
tion, all biospecimens and their corresponding FCS files were
de-identified. A total of 110 AML and 105 non-neoplastic FC samples
were collected for training and cross-validating our approach. Detailed
descriptions including dataset sources, types of instruments and panel,
and case number are listed in Table la. With the exception of 9
non-neoplastic cases from NTUCC, which were monitored for AML re-
sidual disease (MRD) and interpreted as negative, all other samples were
collected at first diagnosis. These cases were measured with five types of
panels, including Euroflow AML/MDS, ClearLLab 10C, and three
different laboratory developed test (LDT) panels, and acquired from
three different instrument models, including BD FACSCantoll, BD
FACSLyric, and Beckman Coulter NaviosEX. Each panel used a unique
combination of markers and channels for AML and non-neoplastic
diagnosis, as outlined in Supplementary Table S1. Of these, sixteen pa-
rameters were shared across all panels: FSC-A, FSC-H, SSC-A, CD7,
CD11b, CD13, CD14, CD16, CD19, CD33, CD34, CD45, CD56, CD64,
CD117, and HLA-DR.

In addition to the training datasets, we collected 90 AML and 106
non-neoplastic FC samples, as described in Table 1b, for use as inde-
pendent validation datasets to assess the performance of the model’s
classification. These samples were not included in any model training.
Non-neoplastic samples from NTUCC, RPCCC, and NTUH were MRD
negative cases. AML cases from RPCCC and NTUH were MRD cases with
residual disease percentage greater than 80 % and 50 %, respectively.
Except for the samples from RPCCC, all validation samples were
measured using the same instrument models and panels as the corre-
sponding training datasets. However, the cases from RPCCC were
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Table 1
Training and validation set across different institutions.
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1a) Training and Validation Datasets

Dataset NTUCC RPCCC VGH UPMC NTUH All Sites
Flow Panel Euroflow AML/MDS ClearLLab 10C LDT LDT LDT 5 panels
Instrument BD FACSLyric Navios EX BD FACSCantoll BD FACSCantoll BD FACSCantoll 3 models
Number of tubes 7 4 4 4 13

File format FCS3.1 FCS3.0 FCS3.0 FCS3.0 FCS2.0

Average Event Per Tube 600,000 70,000 260,000 28,000 100,000

Sample Number (AML, non-neoplastic) 17,19 27,21 17,18 24, 25 25, 22 110, 105
1b) Independent Validation Datasets

Dataset NTUCC RPCCC VGH UPMC NTUH All sites

Flow Panel Euroflow AML/MDS AML MRD LDT LDT LDT LDT 5 panels
Instrument BD FACSLyric BD FACSCantoll BD FACSCantoll BD FACSCantoll BD FACSCantoll 2 models
Number of tubes 7 5 4 4 13

File format FCS3.1 FCS3.0 FCS3.0 FCS3.0 FCS2.0

Average Event Per Tube 600,000 700,000 260,000 28,000 100,000

Sample Number (AML, non-neoplastic) 16, 16 18,17 6, 31 25, 25 25,17 90, 106

Abbreviation: NTUCC: National Taiwan University Cancer Center, RPCCC: Roswell Park Comprehensive Cancer Center, VGH: Taichung Veterans General Hospital,
UPMC: University of Pittsburgh Medical Center, NTUH: National Taiwan University Hospital, AML: Acute Myeloid Leukemia, MDS: Myeloid Dysplastic Syndrome,

LDT: laboratory developed test.

measured using panels specifically designed for AML MRD monitoring,
with several different combinations of tubes employed. Detailed de-
scriptions of the RPCCC panels are provided in Supplementary Table S2.

This study was approved by the Institutional Review Boards (IRBs) in
accordance with the Declaration of Helsinki. The IRB approval codes for
each institution are as follows: RPCCC-STUDY00001445, TCVGH-
SE20116A, NTUCC-202204104RS, UPMC-STUDY21080145, and
NTUH-201906018RINB, while informed consents are waived in all
approvals.

2.2. Machine learning based sample classification framework

We developed a comprehensive machine learning based framework
for cross-panel flow cytometry analysis. The workflow consists of four
primary components: parameter alignment, data preprocessing, sample-
level representation encoding, and classification, as illustrated in Fig. 1.
This section details each component and its implementation.

2.2.1. Parameter alignment and data preprocessing
The initial preprocessing stage is crucial for ensuring compatibility
Parameter Alignment Preprocessing

Select and rearrange common parameters Compensation

across different panels and data quality. Raw FC data undergoes
sequential processing steps:

1. Parameter alignment to extract common parameters presented
across all panels

2. Application of compensation matrices to correct fluorescence spill-
over between channels

3. Random down-sampling per sample to ensure computational
efficiency

4. Max-min normalization of fluorescent channel values to standardize
measurements

Each preprocessed FC data X € R™*P is utilized for the following
sample-level representation encoding and classification, where T is the
total cell number across tubes of one FC sample and D is the number of
common parameters measured across all panels.

2.2.2. Sample-level encoding with Fisher vector
The sample encoding process employs a two-stage approach to
transform variable-length flow cytometry data into fixed-length

Sample-Level Encoding Classification

Gaussian Mixture Model

SVM Classifier Training

ey Remove
VGH Panel VGH Panel ( | Seillover
I I | * CTT1 l \.
NTUH Panel NTUH Panel DOWﬂSampling
RPCCC Panel RPCCC Panel —_— —~
~
T 1] » 13 -
UPMC Panel UPMC Panel
» Z-score Normalization
NTUCC Panel NTUCC Panel u=0
o=1
N I ‘ I I | e

AML and Non-
neoplastic Sample
Classification

Sample Representation Vector

Fig. 1. Workflow of the presented panel-agnostic machine learning (ML) approach for AML versus non-nonneoplastic sample classification. This workflow
is based on our previous sample classification method for a single panel. Common markers/parameters across different panels are selected and rearranged first before

following cross-panel analysis.
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representations suitable for machine learning analysis.
Stage 1: Gaussian Mixture Model Modeling

The Gaussian Mixture Model (GMM) is trained through an
expectation-maximization algorithm with the cell distribution of each
FC sample to obtain a set of parameters A:

A= g, ty, 0x; k=1..K
where wy, 4, and oy represent respectively the mixing weights, mean
vectors, and covariance matrices of k-th Gaussian component. K denotes

the total number of Gaussian components. For a single cell data x; € X,
the GMM probability density function is defined as:

K
P(x [ 4) =Y oxPe(x: | o, py.)
k=1

Stage 2: Fisher Vector Computation

The Fisher Vector encoding quantifies the sample distribution’s de-
viation from the modeled GMM through first and second-order statistics.
The first-order and second-order statistics are computed as:

1 < X — i\
= Hll——) -1
8 =Tz 271 )<< o ) )
where y,(k) represents the posterior probability for x;:
wiPi(4)

(k) =P(i] %, 2) =
j;wjpf(/l)

This process generates a high-dimensional feature vector F with
dimensionality 2KD, where K is the component number of modeled
GMM and D is the number of FC parameters.

2.2.3. Support Vector Machine classification

The computed Fisher Vectors serve as the input to a linear Support
Vector Machine (SVM) classifier. The SVM optimization problem is
formulated as:

.1 2
min |wl| +CZ¢i
subject to : y; (W p(x;) +b) >1—&,£ >0

2.2.4. Algorithm implementation
The procedures of training and predicting algorithms for the pre-
sented classification method are described as below:

Algorithm 1.

Input: 1. Preprocessed FC data X, where X €
2. Clinical diagnosis Y for corresponding X, where
Y € [AML, non-neoplastic|
Output: 1. Parameters for trained GMM
2. Parameters for trained SVM
Procedure:
1 Train GMM with training FC data X
2 Compute feature vector F with trained GMM and Fisher Vector encoding for each FC
data X
3 Train SVM with feature vectors F and corresponding clinical diagnosis Y

Flow Cytometry Classification Training

RT><D
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Algorithm 2. Flow Cytometry Classification Predicting

Input: 1. Preprocessed FC data X' , where X € R™*P and X' ¢ training data X
2. Parameters for trained GMM
3. Parameters for trained SVM
Output: 1. Prediction label Y’
2. Prediction probability P/
Procedure:
1 Compute feature vector F with trained GMM and Fisher Vector encoding for each
FC data X'
2 Output predicted diagnosis label ¥’ and prediction probability P’ for each FC case
with feature vector F and trained SVM

2.3. Sample classifier performance evaluation

The workflow predicts diagnostic labels with probabilities for each
sample. In this study, the applicability and accuracy of this algorithm is
evaluated across five diagnostic laboratories using different reagent
panels. The model was trained and validated with 3-fold cross valida-
tion. The classification performance was evaluated by area under the
receiver operating characteristic curve (AUC), accuracy (defined as the
concordance of model prediction to the ground truth), sensitivity (true
positive rate, TPR), specificity (true negative rate, TNR), false negative
rate (FNR), and false positive rate (FPR). Notably, the threshold, a cutoff
value applied to the model’s predicted probabilities, on the ROC curve
can be adjusted to balance the TPR and TNR, allowing optimization of
the model’s sensitivity or specificity depending on clinical priorities.

2.4. Classification result visualization

The prediction result would be presented in two sample-level visu-
alizations. The first one is a 3D visualization. This method includes
principal component analysis (PCA) -compressed features and predic-
tion probabilities as visualization coordinates. The second method is
Ranked prediction probabilities visualization. The predicted probability
for each FC case is ranked to observe the probability threshold of
wrongly predicted cases.

2.5. Explainability analysis

The importance of each FC parameter to the sample classification
was assessed with three methods, including Single Parameter Selected
experiment, Single Parameter Masked experiment, and Forward
Sequential Feature Selection. The first method trains and validates the
model with one of the original parameters alone and compares all ob-
tained performance to see which parameter achieves better by itself. The
second approach trains the model with the original parameter set, but
validates it with one of the parameters being masked with zero value.
The last method selects a relevant parameter subset from the original set
by starting with an empty parameter set and iteratively adding a
parameter that improves model performance the most at each parameter
count.

2.6. Software and programming resources

All experiments were conducted using programs coded with Python
3.8 on a Linux server (Ubuntu 22.04). This platform includes 48 Intel(R)
Xeon(R) CPUs and 500 GB of RAM for data analysis.
3. Results
3.1. Cross-site AML vs non-neoplastic sample classification

We evaluated the feasibility and performance of cross-panel AML

and non-neoplastic sample classification using various dataset and
parameter combinations. Table 2 summarizes the results of eleven
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Table 2
Model performance with different datasets and parameter sets.
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2a) Performance of models trained with site-dependent parameters

Model A B C D E

Dataset NTUCC RPCCC VGH UPMC NTUH

Panel Euroflow AML/MDS ClearLLab 10C LDT LDT LDT
Site-Dependent Parameter (n) 23 31 22 30 21

Instrument BD FACSLyric Navios EX BD FACSCantoll BD FACSCantoll BD FACSCantoll
Sample Number (AML, non-neoplastic) 17,19 27,21 17,18 24, 25 25, 22

AUC 100.00 % 100.00 % 100.00 % 99.48 % 100.00 %
Accuracy 97.22 % 97.92 % 94.19 % 97.92 % 100.00 %
Sensitivity 94.44 % 96.30 % 87.78 % 100.00 % 100.00 %
Specificity 100.00 % 100.00 % 100.00 % 95.83 % 100.00 %

FNR 5.56 % 3.70 % 12.22 % 0.00 % 0.00 %

FPR 0.00 % 0.00 % 0.00 % 4.17 % 0.00 %

2b) Performance of models trained with common parameters across panels

Model F G H I J K
Dataset NTUCC RPCCC VGH UPMC NTUH All Sites
Panel Euroflow AML/MDS ClearLLab 10C LDT LDT LDT 5 panels
Parameters (n) 16 common parameters” across all panels

Instrument BD FACSLyric Navios EX BD FACSCantoll BD FACSCantoll BD FACSCantoll 3 models
Sample Number (AML, non-neoplastic) 17,19 27,21 17,18 24, 25 25, 22 110, 105
AUC 100.00 % 99.47 % 100.00 % 98.96 % 100.00 % 99.82 %
Accuracy 94.44 % 93.75 % 94.19 % 95.83 % 100.00 % 98.15 %
Sensitivity 88.89 % 96.30 % 87.78 % 95.83 % 100.00 % 97.30 %
Specificity 100.00 % 90.48 % 100.00 % 95.83 % 100.00 % 99.05 %
FNR 11.11 % 3.70 % 12.22 % 4.17 % 0.00 % 2.70 %
FPR 0.00 % 9.52 % 0.00 % 4.17 % 0.00 % 0.95 %

(a) Models A to E were trained with individual dataset and parameters. (b) Model F to J were trained with individual dataset, but only using common parameters across
different panels. Model K was trained with all five datasets and common parameters.

Abbreviation: AML: Acute Myeloid Leukemia, NTUCC: National Taiwan University Cancer Center, RPCCC: Roswell Park Comprehensive Cancer Center, VGH: Tai-
chung Veterans General Hospital, UPMC: University of Pittsburgh Medical Center, NTUH: National Taiwan University Hospital, AUC: area under the receiver operating

characteristic curve, FNR: false negative rate, FPR: false positive rate.

** All metric values are the averaged performance across three-fold cross validation.
# Common parameters: FSC-A, FSC-H, SSC-A, CD7, CD11b, CD13, CD14, CD16, CD19, CD33, CD34, CD45, CD56, CD64, CD117, and HLA-DR.

classification models, trained and tested under different configurations.
Models A to E were trained on individual datasets using site-specific
parameters, while Models F to J were trained using individual datasets
but constrained to the 16 parameters commonly measured across all five
flow cytometry panels. Finally, Model K was trained on the combined
datasets from all five sites using the same 16 common parameters: FSC-
A, FSC-H, SSC-A, CD7, CD11b, CD13, CD14, CD16, CD19, CD33, CD34,
CD45, CD56, CD64, CD117, and HLA-DR.

Models A to E, which utilized an expanded feature set specific to each
site, achieved AUCs between 99.48 % and 100 %. Models F to J, trained

on individual datasets with the 16 common parameters, achieved
comparable classification performance, with AUC values ranging from
98.96 % to 100 % (Table 2). Performance across models trained on the
same dataset was largely consistent, with only marginal performance
differences. For example, Model C and Model H (both trained on the
VGH dataset) achieved identical results: AUC of 100 %, accuracy of
94.19 %, sensitivity of 87.78 %, and specificity of 100 %. Models trained
on NTUH datasets (Models E and J) demonstrated equivalent AUC of
100 % and accuracy of 100 %.

Model K, the panel-agnostic classifier trained on all datasets

13
100{124.¢
g
T
Threshold
T1(73.67% T2 (45.69% T3 (16.42%
g0 (Prediction Probability) ( ) ( ) ( )
Accuracy 96.74% 98.14% 95.81%
X 60
E Sensitivity 93.64% 98.18% 100.00%
s
"é Specificity 100.00% 98.10% 91.43%
8 a0
FNR 6.36% 1.82% 0.00%

50 FPR 0.00% 1.90% 8.57%
Abbreviation: AUC: area under the receiver operating characteristic curve, FNR: false
negative rate, FPR: false positive rate

0 =@= AUC: 99.79% * All metric values are the overall performance of the three-fold cross validation, which
0 20 20 60 80 100 considers predictions from multiple folds as one same fold for evaluation.

False positive rate (100 - Specificity) (%)

Fig. 2. Receiver operating characteristic (ROC) curve of Model K and its performance with different thresholds. The blue line represents the ROC curve of
Model K, along with the black points as different classification thresholds. By adjusting the threshold, the workflow is able to regulate its prediction capability on

AML and non-neoplastic samples.
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combined and using only the 16 common parameters, demonstrated
outstanding performance, achieving an AUC of 99.82 % and accuracy of
98.15 %. This result highlights the utility of the reduced, standardized
parameter set for cross-panel applicability without compromising
diagnostic performance.

The receiver operating characteristic (ROC) curve of Model K (Fig. 2)
shows flexibility in performance depending on the selected threshold. At
threshold T2, Model K achieved an accuracy of 98.14 %, a sensitivity of
98.18 %, and specificity of 98.10 %. When the threshold was adjusted to
T1 to prioritize specificity, the model achieved perfect specificity (100
%) but slightly lower sensitivity (93.64 %) and accuracy (96.74 %).
Conversely, at threshold T3, the model maximized sensitivity (100 %)
while slightly reducing accuracy (95.81 %) and specificity (91.43 %).
These results demonstrate that the model can be adapted to different
operational needs by optimizing the classification threshold. ROC curves
and corresponding confusion matrices for all models (A through K) are
presented in Supplementary Fig. S1.

3.2. Independent validation

Independent validation datasets were utilized to evaluate the
generalizability of Model K, with performance metrics summarized in
Table 3. Model K achieved an overall AUC of 98.71 % and an accuracy of
93.88 %, effectively distinguishing AML-positive cases from non-
neoplastic cases across the independent datasets. Of particular note,
the RPCCC dataset, which was measured using the AML-MRD panel,
contained panel compositions that were not included in the training
dataset and incorporated several composition variations across different
tubes (Supplementary Table S2). Despite this variability, Model K
demonstrated robust performance on the RPCCC dataset, achieving an
AUC of 100 %, accuracy of 97.14 %, sensitivity of 100 %, and specificity
of 94.12 % (Table 3). These findings underscore the model’s flexibility
and resilience in accurately classifying AML and non-neoplastic cases
across diverse datasets and panel configurations.

3.3. Visualization of classification results

To further interpret and compare classification results, we deployed
3D visualizations (Fig. 3a) and ranked prediction probability distribu-
tion plots (Fig. 3b and c) to assess Model K’s performance based on its
predictions and ground truth labels. In the 3D visualization, each point
represents a single flow cytometry (FC) case, with the center color
indicating the ground truth diagnosis and the edge color representing
the predicted label. Out of the 215 cases analyzed, Model K produced
four discordant predictions, as detailed in Supplementary Table S3.

The 3D visualization (Fig. 3a), based on principal component anal-
ysis (PCA)-compressed features, demonstrated clear separation between
AML and non-neoplastic cases, highlighting Model K’s ability to extract
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meaningful, panel-agnostic sample-level features. The ranked prediction
probability plots (Fig. 3b) revealed that misclassifications occurred
when AML prediction probabilities dipped below 45.69 % or when non-
neoplastic probabilities dropped below 28.47 %. Similarly, Fig. 3c,
which emphasizes independent validation datasets represented in
deeper colors, showed misclassifications when AML probabilities fell
below 46.62 % or non-neoplastic probabilities fell below 41.68 %.
Discordant cases identified within the independent validation datasets
are listed in Supplementary Table S4.

These visualizations effectively highlight Model K’s performance and
its ability to generalize across diverse datasets, while clearly identifying
the thresholds at which misclassifications occur. This approach further
emphasizes Model K’s consistency, and interpretability in accurately
classifying AML and non-neoplastic cases, even across varying panel
configurations.

3.4. Assessing contribution of features to model performance

We implemented multiple feature selection approaches to evaluate
the relative contribution of each parameter to Model K’s classification
performance and to assess parameter interactions and their effect on
model performance. Fig. 4 illustrates the individual contributions of the
16 common parameters to Model K’s performance. In single-parameter
training experiments, AUC values ranged from 62.9 % (CD13) to 96.9
% (CD117), while accuracy values ranged between 57.7 % (CD13) and
91.2 % (SSC-A). The most influential parameters, each achieving an AUC
above 82 %, were identified as CD117, SSC-A, CD34, HLA-DR, and
CD16. Conversely, CD13, CD56, and CD45 demonstrated lower indi-
vidual impact, with AUC values lower than 65 %.

Parameter masking experiments revealed the critical importance of
specific markers in the classification process. During these experiments,
individual parameters were systematically masked during model vali-
dation, and the impact on performance was assessed using AUC and
accuracy metrics. HLA-DR, CD117, CD64, and CD56 emerged as
particularly crucial parameters, with their masking resulting in sub-
stantial performance decreases: AUC reductions of 43.09 %, 24.89 %,
4.50 %, and 3.15 % (Fig. 5a), respectively, and accuracy decreases of
48.38 %, 45.14 %, 26.01 %, and 26.02 % (Fig. 5b). The marked
reduction in accuracy following HLA-DR and CD117 masking un-
derscores their significance in distinguishing between AML and non-
neoplastic cases. Notably, while CD64 and CD56 showed modest and
poor performance in single-parameter analysis, their substantial impact
in masking experiments suggests their value lies primarily in synergistic
interactions with other parameters rather than as standalone markers.

Forward sequential feature selection was employed to evaluate the
interaction and relative importance of different parameter combina-
tions. A total of 136 parameter combinations were assessed, with
detailed results presented in Supplementary Table S5.

Table 3

Performance model K on independent validation datasets.
Independent Validation Dataset NTUCC RPCCC VGH UPMC NTUH All Sites
Panel Euroflow AML/MDS AML MRD LDT LDT LDT LDT 5 panels
Parameters (n) 16 common parameters” across all panels from training datasets
Instrument BD FACSLyric BD FACSCantoll BD FACSCantoll BD FACSCantoll BD FACSCantoll 2 models
Sample Number (AML, non-neoplastic) 16, 16 18,17 6, 31 25, 25 25,17 90, 106
AUC 100.00 % 100.00 % 100.00 % 96.96 % 98.12 % 98.71 %
Accuracy 96.88 % 97.14 % 97.30 % 90.00 % 90.48 % 93.88 %
Sensitivity 93.75 % 100.00 % 83.33 % 96.00 % 100.00 % 96.67 %
Specificity 100.00 % 94.12 % 100.00 % 84.00 % 76.47 % 91.51 %
FNR 6.25 % 0.00 % 16.67 % 4.00 % 0.00 % 3.33%
FPR 0.00 % 5.88 % 0.00 % 16.00 % 23.53 % 8.49 %

Abbreviation: NTUCC: National Taiwan University Cancer Center, RPCCC: Roswell Park Comprehensive Cancer Center, VGH: Taichung Veterans General Hospital,
UPMC: University of Pittsburgh Medical Center, NTUH: National Taiwan University Hospital, LDT: laboratory developed test, AUC: area under the receiver operating

characteristic curve, FNR: false negative rate, FPR: false positive rate.

# Common parameters: FSC-A, FSC-H, SSC-A, CD7, CD11b, CD13, CD14, CD16, CD19, CD33, CD34, CD45, CD56, CD64, CD117, and HLA-DR.
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Table 4 summarizes the best-performing parameter combination for selection. As additional parameters were incorporated, the AUC
each parameter count. Using CD117 alone, the model achieved an AUC remained relatively stable with minor fluctuations. A seven-parameter
of 96.92 %, consistent with its strong performance in single-parameter subset (FSC-A, SSC-A, CD11b, CD13, CD33, CD56, CD117) achieved
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Table 4
Results of forward sequential feature selection.
Count  Parameter Subset Added AUC ACC
1 CD117 CD117 96.92 % 90.23 %
2 SSC-A, CD117 SSC-A 99.01 % 94.88 %
3 SSC-A, CD11b, CD117 CD11b 99.97 % 98.6 %
4 SSC-A, CD11b, CD13, CD117 CD13 100.0 % 99.53 %
5 FSC-A, SSC-A, CD11b, CD13, CD117 FSC-A 100.0 % 99.53 %
6 FSC-A, SSC-A, CD11b, CD13, CD33, CD33 100.0 % 98.60 %
CD117
7 FSC-A, SSC-A, CD11b, CD13, CD33, CD56 100.0 % 99.54 %
CD56, CD117
8 FSC-A, SSC-A, CD11b, CD13, CD33, CD34 100.0 % 98.14 %
CD34, CD56, CD117
9 FSC-A, FSC-H, SSC-A, CD11b, CD13, FSC-H 100.0 % 98.60 %
CD33, CD34, CD56, CD117
10 FSC-A, FSC-H, SSC-A, CD11b, CD13, CD16 100.0 % 98.60 %
CD16, CD33, CD34, CD56, CD117
11 FSC-A, FSC-H, SSC-A, CD11b, CD13, CD45 100.0 % 99.07 %
CD16, CD33, CD34, CD45, CD56,
CD117
12 FSC-A, FSC-H, SSC-A, CD11b, CD13, CD14 100.0 % 98.60 %
CD14, CD16, CD33, CD34, CD45,
CD56, CD117
13 FSC-A, FSC-H, SSC-A, CD11b, CD13, CD19 100.0 % 98.61 %
CD14, CD16, CD19, CD33, CD34,
CD45, CD56, CD117
14 FSC-A, FSC-H, SSC-A, CD11b, CD13, CD64 99.97 % 98.61 %
CD14, CD16, CD19, CD33, CD34,
CD45, CD56, CD64, CD117
15 FSC-A, FSC-H, SSC-A, CD11b, CD13, HLA- 99.97 % 98.15 %
CD14, CD16, CD19, CD33, CD34, DR
CD45, CD56, CD64, CD117, HLA-DR
16 FSC-A, FSC-H, SSC-A, CD7, CD11b, CD7 99.82 % 98.15 %

CD13, CD14, CD16, CD19, CD33,
CD34, CD45, CD56, CD64, CD117,
HLA-DR

Abbreviation: AUC: area under the receiver operating characteristic curve, ACC:
Accuracy.

optimal performance, with an AUC of 100 % and accuracy and 99.54 %,
and slightly surpassed the original parameter set.

4. Discussion
4.1. Panel-agnostic framework and parameter reduction

Achieving consensus on flow cytometry panel compositions for
similar clinical applications remains a challenge due to variability in
laboratory practices, instrumentation, and evolving technological ad-
vancements. Recognizing this variability, we propose a flexible, panel-
agnostic framework that accommodates differences in marker panels
and instrument models while providing standardized classification so-
lutions to reduce the analytical burden on laboratories.

Previous studies from our group have demonstrated that machine
learning (ML)-based classification of acute myeloid leukemia (AML)
samples can maintain high performance even with reduced parameter
sets [16,17,19]. For instance, our UPMC single-center study showed that
a model trained on just four parameters (FSC-A, FSC-H, SSC-H, and
CD117) achieved 91.9 % accuracy, compared to 94.2 % accuracy when
utilizing all 37 parameters [17]. In the current study, our panel-agnostic
approach using 16 common parameters demonstrated equivalent per-
formance across both training datasets (Table 2) and independent vali-
dation datasets (Table 3). These findings underscore the potential for
further parameter reduction while maintaining robust classification
performance across diverse laboratory settings.

4.2. Model performance and feature selection

The receiver operating characteristic (ROC) curve analysis (Fig. 2)
demonstrated the flexibility of classification thresholds, which can be
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adjusted to optimize either specificity (minimizing false positives) or
sensitivity (minimizing false negatives). When combined with the
sample visualization approach (Fig. 3), the model’s predictions and
associated probabilities provide valuable decision support for objective,
sample-level classification and efficient prioritization of cases requiring
manual review.

Feature selection analysis of Model K (Fig. 4) identified CD117, HLA-
DR, CD34, SSC-A, and CD16 as particularly informative parameters,
each capable of achieving >85 % AUC in AML versus non-neoplastic
classification independently. Parameter masking experiments (Fig. 5)
revealed that individual masking of HLA-DR, CD117, CD64, and CD56
resulted in the most substantial performance decreases, with AUC re-
ductions and accuracy drops exceeding 20 %. Forward feature selection
analysis (Table 4) further confirmed the importance of CD117, SSC-A,
and CD56 among the 16 common parameters. These findings align
with the biological significance of these markers: CD117 (c-lit), a tyro-
sine kinase receptor expressed on early myeloid progenitor, serves as a
crucial role for confirming the myeloid origin of blast cells, determining
their maturation stage, and even harboring therapeutic implications
with tyrosine kinase inhibitors [22,23]. CD34 is a marker of hemato-
poietic stem and early progenitor cells, and its expression indicates a
high proportion of immature blasts, which is a common feature of many
AML cases [24]. CD16 expression is typically associated with mature
neutrophils and natural killer cells. In the context of AML, its expression
helps determine the degree of differentiation, especially in cases where
blasts show granulocytic maturation [24]. HLA-DR, a major histocom-
patibility complex class I antigen, is instrumental in distinguishing AML
subtypes. Although most AML cases express HLA-DR, its absence is a
hallmark of acute promyelocytic leukemia (APL), a subtype with unique
clinical intervention [25]. CD56 is predominantly expressed in NK cells
[22]. Moreover, previous studies have demonstrated that aberrant CD56
expression in AML correlates with poor prognosis [26,27]. Taking
together, CD34 confirms the immature nature of the blasts, HLA-DR
helps in distinguishing AML subtypes (notably the HLA-DR-negative
APL), CD117 supports the myeloid lineage identification and can hint
at underlying genetic mutations, CD16 indicates the degree of differ-
entiation in granulocytic lineage cells, and CD56 identifies aberrant
expression patterns of AML blasts. It is therefore not surprising that these
markers are critical for our cross-institute model performance.

Notably, quantum yield of the fluorochromes is not likely to impact
the model performance of our algorithm. With the information on the
fluorochromes used for the top-performing single features, i.e. CD117,
CD34, HLA-DR and CD16, we can observe that the markers were con-
jugated to fluorochromes with varying brightness levels (dim to bright)
across centers (Supplement Table S6). The finding suggests that the
brightness or quantum yield of the fluorophore alone may not signifi-
cantly account for classification performance. Instead, our data pro-
cessing framework, coupled with the inherent characteristics of the
Gaussian Mixture Model, appears to effectively mitigate fluorescence
intensity variability. This enables the encoding of biologically relevant
features from the data, resulting in robust sample-level classification
regardless of fluorochrome intensity.

Model performance variability was still observed to some extent in
our study and can be attributed to certain intrinsic differences between
institutions. For example, the average event number per tube was
significantly lower in the UPMC dataset, which may have affected
sample representation (Tables 1a and 1b). Additionally, the FCS file
format used in the NTUH dataset was FCS2.0, whereas other datasets
employed FCS3.0 or FCS3.1. These differences, along with other site-
specific factors such as panel variability, sample handling, and instru-
ment calibration, may partially explain why the cross-panel model
exhibited differing performance across subsets. One practical approach
to mitigate these site-specific differences is to implement institution-
specific probability thresholds when applying the model. As illustrated
in Fig. 2, adjusting the classification threshold allows for an optimized
balance between sensitivity and specificity based on local validation
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results. Through this customized calibration approach, institutions can
effectively manage their predominant challenges by selectively reducing
false positives or false negatives according to their specific needs.
Moving forward, we can enhance cross-site performance consistency
through optimized harmonization strategies and model refinement
using expanded, multi-institutional datasets.

4.3. Analysis of misclassified cases

To investigate potential sources of discordance, we performed a
detailed manual review of cases misclassified by Model K. In the cross-
validation analysis, four discordant cases were identified: three AML
cases incorrectly classified as non-neoplastic (with probabilities of
16.42 %, 16.82 %, and 45.69 %, respectively) and one non-neoplastic
case misclassified as AML (with a probability of 28.47 %, Supplemen-
tary Table S3). Analysis of the independent validation datasets revealed
additional misclassifications, including three AML cases incorrectly
identified as non-neoplastic (with probabilities of 16.95 %, 35.31 %, and
46.62 %, respectively) and nine non-neoplastic cases from RPCCC,
UPMC, and NTUH that were misclassified as AML (with probabilities
ranging from 0 % to 41.68 %, Supplementary Table S4). Notably, all
misclassifications occurred with relatively low prediction probabilities,
suggesting that implementing probability thresholds could effectively
flag these cases for manual review.

Selected scatter plots from the manual analysis are provided in
Supplementary Fig. S2. A breakdown of misclassified cases is detailed
below.

4.4. AML cases misclassified as non-neoplastic

A total of six AML cases were misclassified as non-neoplastic: three in
the cross-validation set (Supplementary Table S3) and three in the in-
dependent validation set (Supplementary Table S4). Within the RPCCC
dataset, two AML cases were misclassified (Supplementary Fig. S2a-1 &
2); both displayed a higher proportion of monocytes that were CD64-
positive but only partially CD14-positive. Similarly, two AML cases
from VGHTC were also misclassified (Supplementary Fig. S2a-3 & 4).
One case revealed a prominent abnormal population within the
CD45dim region, which was positive for CD13, CD34, CD117, and
CD56, but showed dim expression of HLA-DR (Supplementary
Fig. S2a-3). The other case suffered from poor specimen quality, with
over 50 % of events negative for CD45, while the abnormal population
was positive for CD13, CD34, CD117, CD33, CD7, and HLA-DR
(Supplementary Fig. S2a-4). Additionally, one NTUHCC case was mis-
classified, exhibiting a CD34~, HLA-DR- phenotype while being positive
for CD117, CD11b, CD13, CD33, and CD38 in the CD45dim gate
(Supplementary Fig. S2a-5). Furthermore, one AML case from UPMC
was misclassified as non-neoplastic. However, a manual review
concluded that there was no flow evidence of leukemia (Supplementary
Fig. S2a-6). This case illustrates how the Al prediction model can assist
in identifying instances that may be misinterpreted during routine
evaluations.

Excluding the one case requiring diagnosis revision to non-neoplastic
disease, the blast percentage of the remaining 5 misclassified cases
showed no statistically significant difference compared to AML cases in
the cross- and independent validation cohorts (median + standard de-
viation: 38.8 + 18.3 % vs. 43.1 £ 14.8 %), suggesting blast percentage
was not a critical predictive feature for the model. Notably, after
reviewing the immunophenotypes of our mis-classified cases and inde-
pendent test ones, we found that 60 % (3/5) of the misclassified AML
cases lacked CD34 expression, which was higher than the overall fre-
quency 23.3 % (21/90) in our independent validation dataset. Given
that CD34 emerged as a heavily weighted feature for AML classification,
its absence likely contributed significantly to these misclassification
events, highlighting a model limitation in identifying CD34-negative
cases. Similarly, HLA-DR-negative cases were overrepresented among
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misclassifications, with 40 % (2/5) lacking HLA-DR expression
compared to 14.4 % (13/90) in the validation cohort. CD117-negative
expression was observed in one misclassified case (20 %) versus 16.6
% (15/90) in the validation dataset. In general, reduced expression of
CD34 and HLA-DR in leukemia cells seemed to impact substantially on
model performance, likely due to their relative underrepresentation in
our AML dataset. To address this limitation in the future, future itera-
tions of the model could benefit from a more balanced cohort enriched
with CD34-negative and/or HLA-DR-negative AML cases, thereby
improving classification accuracy for these clinically important
subtypes.

4.5. Non-neoplastic cases misclassified as AML

A total of ten non-neoplastic cases were misclassified as AML: one in
the cross-validation set (Supplementary Table S3) and nine in the in-
dependent validation set (Supplementary Table S4).

One misclassified case from NTUHCC was examined through manual
review and revealed sparse myeloid progenitors, but marker expression
was consistent with normal epitope density, providing no evidence of
leukemia (Supplementary Fig. S2b-1). Another misclassified case from
RPCCC was determined to be B-cell Acute Lymphoblastic Leukemia (B-
ALL) upon review. The abnormal population in this case exhibited fea-
tures of CD45 dim, CD13 dim, CD33 high, CD34 positive, CD38 bright,
CD10 bright, and CD19 positive, consistent with a B-ALL immunophe-
notype rather than AML (Supplementary Fig. S2b-2).

Four UPMC non-neoplastic cases were misclassified as AML. After
manual review, two cases showed no evidence of acute leukemia
(Supplementary Fig. S2b-3 & 6), one case was consistent with myelo-
dysplastic syndrome (MDS), with an abnormal population showing
distinct immunophenotypes (Supplementary Fig. S2b-4), and one case
exhibited a paucity of granulocytes and a B-cell population that was
insufficient to definitively support a diagnosis of leukemia
(Supplementary Fig. S2b-5).

Lastly, four NTUH non-neoplastic cases were misclassified as AML.
Upon manual review, it was found that two cases were consistent with
AML (Supplementary Fig. S2b-7 & 8), one case displayed no evidence of
acute leukemia (Supplementary Fig. S2b-9), and one case showed an
atypical myeloid population that could not definitively support a diag-
nosis of leukemia (Supplementary Fig. S2b-10).

4.6. Clinical implication and future direction

In conclusion, our findings demonstrate that machine learning-based
approaches can effectively identify complex patterns and abnormalities
in flow cytometry data while maintaining robust performance across
diverse laboratory settings. The panel-agnostic framework we have
developed offers several significant advantages: it enables the imple-
mentation of simplified flow cytometry panels, ensures consistent
analysis quality, and accommodates variations in panel composition and
instrumentation across different laboratories. This flexibility allows
operators to benchmark their results against expertly curated datasets,
providing valuable quality assurance support. Moreover, the frame-
work’s ability to maintain high diagnostic accuracy with reduced
parameter sets makes it particularly valuable in resource-limited envi-
ronments, where it can significantly decrease the analytical burden on
laboratory personnel without compromising diagnostic standards.
Future work will focus on extending this framework to support different
clinical applications, such as multiple hematological malignancies
classification and disease monitoring, further enhancing its utility across
various clinical and research settings.
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